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Abstract. We show that any upper finite or essentially finite highest weight
category where the standard objects have linear projective resolutions and the
costandard objects have linear injective resolutions is Koszul. This extends the result
of [ÁDL03] to the case of infinite highest weight categories. We apply this result to
Khovanov algebras and representations of classical Deligne categories and show that
these are Koszul.

1. Introduction

Koszul algebras. A Koszul algebra A is a positively graded algebra with semisimple
A0 which is as “close” to being semisimple as possible, i.e.

ExtnA(A0, A0⟨k⟩) = 0 unless n = k.

This is equivalent to saying that all irreducible modules L have a linear projective
resolution, that is a projective resolution

. . . P 2 P 1 P 0 L

such that P i is generated by its degree i component (i.e. P i = AP i
i , see [BGS96] and

[MOS09]).
A Koszul algebra A has a Koszul dual algebra E(A). A main feature of the two is

that their graded module categories are related, namely (under additional finiteness
assumptions) the associated graded derived categories of A and of E(A) are equivalent.
Koszulity is in general a very desirable property, but often not easy to verify.

In case the algebra is quasi-hereditary (which requires that it is finite dimensional),
its categories of modules is a highest weight category in the sense of [CPS94]. In this

situation, there is a very convenient way to check Koszulity which is due to [ÁDL03]:
instead of showing the existence of linear projective resolutions for irreducible modules,
it suffices to show it for standard modules. In practise this is usually much easier.
One might even have extra tools available to construct these resolutions by induction
on the partial ordering given by the highest weight structure. A typical example is
given by the algebra controlling a regular block of category O for a semisimple Lie
algebra g, where translation functors allow such an induction argument.

However he finiteness assumption required in these settings is very restrictive.
1
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The main result. The main result of this article is an extension of the [ÁDL03]
result to a semi-infinite setting. Motivated by the fact that many categories which
exhibit highest weight structures satisfy natural, but weaker finiteness conditions as
in the classical setup, Brundan and Stroppel defined in [BS24] three different types of
highest weight categories called upper finite, lower finite and essentially finite.

A typical example is given by integral blocks of category O of positive, of negative
and of critical level respectively for a Kac-Moody Lie algebra g. By a result of Soergel,
[Soe98], the case of positive and negative level are related by Ringel duality providing
an example of the general result from [BS24] that upper finite and lower finite highest
weight categories are related by Ringel duality. As a consequence, it suffices to ask
for a generalisation of the [ÁDL03] Koszulity criteria to the upper finite and to the
essentially finite cases (the lower finite case follows then from the upper finite one by
working with tilting resolutions instead of projective resolution).

Definition 1.1. Let R be an upper finite or essentially finite highest weight category.
We call R standard Koszul if every standard object ∆(λ) admits a linear projective
resolution and every costandard object ∇(λ) admits a linear injective resolution.

Theorem 1.2. If R is standard Koszul, then R is Koszul.

If R admits a duality preserving the irreducibles, the condition on the ∇(λ) can be
dropped. We omit the lower finite case here since these categories do not have enough
projective objects unless they are already essentially finite.

Applications. We apply our result to two different categories and show that these
are Koszul: the representation categories of Khovanov algebras of type A and B and
of the Deligne categories Rep(Oδ) and Rep(GLδ), δ ∈ C.

Khovanov algebras were first considered in the context of categorification of tangle
invariants [Kho02], [Str09]. The generalized versions considered in this article were
first introduced in [BS11a] for type A and in [ES16] for type B. These (generalized)
Khovanov algebras have subsequently been used to introduce and study graded versions
of blocks of gl(m|n) [BS12b] and OSp(r|2n) [ES17], parabolic category O and the
(walled) Brauer algebra [BS12a].

Khovanov algebras depend on a set of weight diagrams, which can be finite or
infinite in type B, C, D. The finite dimensional versions in type A from [BS11a]
and the one of type B from [ES16] are known to be Koszul, which can be seen via
identifying them with parabolic blocks of the Bernstein–Gelfand–Gelfand category
O as in [BS11b, Theorem 1.1] (resp. [ES16, Theorem 9.1]), which are known to be
Koszul (see e.g. [BGS96]). In [BS10], a different approach was used to directly prove
that the Khovanov algebra of type A is Koszul without first identifying it with some
category O. We focus on the type B version KΛ in the following.
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As modules over Khovanov algebras are semi-infinite highest weight categories, it
suffices by Theorem 2.9 to construct a linear projective resolution of the standard
modules. The essential tool for this are projective functors, see also [HNS24]. These
functors are defined by tensoring with certain bimodules and correspond to translation
functors when linking the Khovanov algebras to representations of OSp(r|2n) or to
parabolic category O.

Theorem 1.3. For every standard module ∆(λ) there exists a linear projective resolu-
tion. In particular, KΛ is Koszul.

We refer to [HNS24] for a detailed study of the involved modules.
The second set of examples arises from the theory of Deligne categories. Deligne

categories are universal monoidal categories which interpolate categories of repre-
sentations for families of groups like the classical groups GL(m), O(n) but also of
supergroups like GL(m|n) or OSp(r|2n) and allow to treat these cases as continuous
families Rep(GLδ) respectively Rep(Oδ) with δ ∈ C. A representation of Rep(Oδ)
is a contravariant functor from Rep(Oδ) to V ect, the category of finite dimensional
complex vector spaces. We denote this category by D(δ). By [ES21, Corollary 2.11]
the category D(δ) is an upper finite highest weight category and there is an equivalence
of categories between D(δ) and gmodlf (KΛ). Hence, we obtain:

Corollary 1.4. The graded version of the category of representations of the Deligne
category Rep(Oδ) is Koszul.

Similar results hold in type A.

Outlook. We expect that the results of this article can be applied in many more
examples. One such example are path algebras of infinite quivers which allow trunca-
tions to finite quivers. A particularly beautiful example are the Cubist algebras by
Chuang and Turner [CT08]. For these algebras Koszulity is already established in
[CT08] by considering finite truncations of the underlying poset. (We need to retain
minor finiteness assumptions as discussed in [MOS09] to exclude examples of quivers
containing vertices with an infinite number of adjacent edges in which cases irreducible
modules might not have any resolution with finitely generated projective modules at
all.)

Other possible examples are representation categories of more general diagrammatic
tensor categories since these often exhibit upper finite highest weight structures.
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2. Koszul algebras and highest weight categories

Definition 2.1. A locally unital algebra A =
⊕

d∈ZAd is an associative (but not
necessarily unital) algebra together with a system {eλ | λ ∈ Λ} of mutually orthogonal
idempotents such that

A =
⊕
λ,µ∈Λ

eλAeµ.

The locally unital algebra A is locally finite-dimensional if dim eλAeµ < ∞ for all
λ, µ ∈ Λ. It is called essentially finite-dimensional if dim eλA and dimAeλ are finite
for all λ ∈ Λ. By an A-module we always mean a left A-module M such that

M =
⊕
λ∈Λ

eλM.

An A-module M is called locally finite-dimensional if dim eλM < ∞ for all λ ∈ Λ and
d ∈ Z. If A is locally unital, we will denote by modlf (A) all locally finite dimensional
A-modules and by A -mod the full subcategory of all finite dimensional ones.

For the following definitions we will always assume that A is a locally unital, locally
finite dimensional positively graded algebra such that A0 is semisimple. Any module
over A is assumed to be locally finite dimensional.

Definition 2.2. For d ∈ Z, letM be an A-module generated by its degree d component.
A linear projective resolution of M is a projective resolution

. . . P 2 P 1 P 0 M

such that P i is generated by its degree i + d component (i.e. P i = AP i
i+d). If this

property only holds for P i with i ≤ n for some n ∈ Z≥0, we call this an n-linear
projective resolution. We also have the analogous notion of linear injective resolutions.
The algebra A is called Koszul (see [Pri70], and also [BGS96], [MOS09]) if every
irreducible module admits a linear projective resolution.

We recall the definition of highest weight categories from [BS24].

Definition 2.3. Let A be a locally unital, locally finite dimensional algebra A with
semisimple A0. Assume that R is equivalent to either modlf(A) or A -mod (if A is
essentially finite-dimensional). A poset Λ is called upper finite if [µ,∞) is finite for
all µ ∈ Λ, lower finite if (∞, µ] is finite for all µ ∈ Λ and essentially finite if [µ, λ]
is finite for all λ, µ ∈ Λ. Suppose that Λ is upper finite in case R ∼= modlf(A) and
essentially finite in case R ∼= A -mod, and suppose that there is a bijection λ 7→ L(λ)
from Λ onto the isomorphism classes of simple objects up to grading shift.

We have Serre subcategories R≤λ and R<λ of R generated by all simple objects L(µ)
with µ ≤ λ and µ < λ, respectively. We say that R is an upper finite (respectively
essentially finite) highest weight category if the following conditions are satisfied:
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(1) The Serre quotient category Rλ := R≤λ/R<λ is simple for all λ ∈ Λ.
(2) Denote by jλ : R≤λ → Rλ := R≤λ/R<λ the quotient functor and set Pλ(λ) =

Lλ(λ) = jλL(λ) and denote by Pλ(λ) its projective cover. The functor jλ has
a left adjoint jλ! and we set ∆(λ) = jλ! Pλ(λ). Then we require: For every λ ∈ Λ
the projective cover P (λ) of L(λ) has a finite filtration with ∆(λ) at the top
and other sections ∆(µ) for µ ≥ λ.

Example 2.4. The following categories provide examples of semi-infinite highest
weight categories.

(1) [BS24, Theorem 6.4] Let g be an affine Kac–Moody algebra and let OΛ be an
integral block of O of non-critical level. In non-critical levels, the irreducible
modules in the block are parametrized by the elements in the Weyl group orbit
W · λ where λ is integral of non-critical level. In case the level is positive, the
block OΛ is an upper finite highest weight category, and the standard objects
are the Verma modules ∆(λ) for λ ∈ Λ. The partial order ≤ on Λ is the
dominance order.

(2) Various types of Deligne or interpolation categories give rise to upper finite
highest weight categories. While these categories are not necessarily abelian,
one can consider their category of representations, contravariant functors from
C to V ect (finite dimensional vector spaces). An example is given by the
partition category studied in [Del07], [BV22]. This category of representations
is an upper finite highest weight category. A similar situation occurs in the
case of the Deligne category Rep(Oδ), δ ∈ C (see Section 4 for details). It was
also shown in [GRS23] that one gets upper finite highest weight categories in
this way from the cyclotomic Brauer category and the cyclotomic Kauffman
category.

Remark 2.5. To obtain a graded highest weight category, the following changes have
to be made:

(1) We consider graded locally unital algebras A where the pieces eλAeµ are degree-
wise finite dimensional and bounded below. All modules are assumed to be
graded and locally finite dimensional, meaning that eλMd is finite dimensional
for all λ ∈ Λ and d ∈ Z.

(2) The filtration of the projective cover P (λ) is not necessarily finite anymore,
but we require that ∆(µ)⟨k⟩ appears in the filtration only for finitely many
µ ∈ Λ. Furthermore, the multiplicity of ∆(µ)⟨k⟩ is finite and 0 for k ≪ 0.

Definition 2.6. Let R be an upper finite or essentially finite graded highest weight
category. We call R standard Koszul if every standard object ∆(λ) admits a linear
projective resolution and every costandard object ∇(λ) admits a linear injective
resolution.
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Remark 2.7. If R admits a duality preserving the irreducibles, then the existence
of linear injective resolutions of costandard objects follows from applying the duality
to the linear projective resolutions of standard objects. So in this case, it suffices to
check the existence of linear projective resolutions of standard objects.

Remark 2.8. We excluded the case of R being a lower finite highest weight category,
as these usually do not have projective objects. In fact, if a lower finite highest weight
category has projective objects, it is actually already essentially finite.

The main theorem of this paper is the following theorem, extending the result of
[ÁDL03] to the case of infinite highest weight categories.

Theorem 2.9. If R is standard Koszul, then R is Koszul.

Before we are going to prove this, we will introduce some preparatory results.

Lemma 2.10 (Homological criterion for linear projective resolution). Consider
∆(ν) for ν ∈ Λ. Then ∆(ν) admits a linear projective resolution if and only if
ExtrA(∆(ν), L(µ)⟨k⟩) = 0 unless r = d− k for all µ ∈ Λ.

Proof. Consider a projective resolution of ∆(ν):

. . . P 2 P 1 P 0 ∆(ν).

We have P i =
⊕

λ,k(P (λ)⟨k⟩)⊕nλ,k for some nλ,k ∈ Z≥0. From the assumptions on the
∆-filtration of any indecomposable projective, we may assume that only finitely many
P (λ) appear with degree shift k (and none appear with degree shift k for k ≪ 0).

Since any degree 0 morphism f : P (λ) → P (µ) implies that f is an isomorphism (as
A0 semisimple), we can inductively remove these terms (starting from i = 0 and small
k). In particular, we can assume that all differentials have degree > 0. Therefore, if
we apply HomA( , L(λ)⟨k⟩) to the complex, every differential vanishes. Thus, we have
ExtrA(∆(ν), L(λ)⟨k⟩) = 0 unless r = d− k if and only if ∆(ν) has a linear projective
resolution. □

This homological criterion allows us to show that standard Koszulity translates to
upper truncations and lower truncations. We assume in the following that R is an
upper finite or essentially finite highest weight category with poset Λ (which is upper
finite respectively interval finite).

Lemma 2.11. Let Λ↑ ⊆ Λ be an upper set (i.e. λ ∈ Λ↑ implies µ ∈ Λ↑ for all µ ≥ λ).
Let R↑ be the corresponding Serre quotient category (i.e. the quotient by the Serre
subcategory generated by L(λ) for λ /∈ Λ↑). If R is standard Koszul, then R↑ is
standard Koszul.

Proof. Write j : R → R↑ for the quotient functor and denote by j! the left adjoint
functor and by j∗ the right adjoint. By [BS24, Thm. 3.18] and [BS24, Thm. 3.42]
respectively, we have the following properties
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• R↑ is an upper finite or essentially finite highest weight category with simple
objects L↑(λ) := jL(λ), standard objects ∆↑(λ) := j∆(λ) and costandard
objects ∇↑(λ) := j∇(λ) for λ ∈ Λ↑,

• j!∆
↑(λ) = ∆(λ) for all λ ∈ Λ↑,

• Extr(j!∆
↑(λ), L(µ)⟨k⟩) = Extr(∆↑(λ), jL(µ)⟨k⟩) for all r ≥ 0, k ∈ Z and λ,

µ ∈ Λ.
• j∗∇↑(λ) = ∇(λ) for all λ ∈ Λ↑,
• Extr(L(µ)⟨k⟩, j∗∇↑(λ), ) = Extr(jL(µ)⟨k⟩,∇↑(λ)) for all r ≥ 0, k ∈ Z and λ,
µ ∈ Λ.

In virtue of Lemma 2.10, we have to show that Extr(∆↑(λ), L↑(µ)⟨k⟩) = 0 unless
r = k for all λ, µ ∈ Λ↑. We have

Extr(∆↑(λ), L↑(µ)⟨k⟩) = Extr(j!∆
↑(λ), L(µ)⟨k⟩) = Extr(∆(λ), L(µ)⟨k⟩)

which is zero unless r = k by assumption. The same argument shows the state-
ment for the linear injective resolutions of costandard objects (using the analogue of
Lemma 2.10). □

Lemma 2.12. Let Λ↓ ⊆ Λ be a lower set (i.e. λ ∈ Λ↓ implies µ ∈ Λ↓ for all µ ≤ λ).
Let R↓ be the corresponding Serre subcategory. If R is standard Koszul, then R↓ is
standard Koszul.

Proof. Write i : R↓ → R for the inclusion functor and denote by i∗ the left adjoint
functor and by i! the right adjoint. By [BS24, Thm. 3.17] and [BS24, Thm. 3.41]
respectively, we have the following properties

• R↓ is an upper finite or essentially finite highest weight category with simple
objects L↓(λ) ∼= L(λ), standard objects ∆↓(λ) ∼= ∆(λ) and costandard objects
∇↓(λ) ∼= ∇(λ) for λ ∈ Λ↓,

• i∗∆(λ) = ∆↓(λ) for all λ ∈ Λ↓,
• Extr(i∗∆(λ), L(µ)⟨k⟩) = Extr(∆(λ), iL(µ)⟨k⟩) for all r ≥ 0, k ∈ Z and λ, µ ∈
Λ.

• i!∇(λ) = ∇↓(λ) for all λ ∈ Λ↓,
• Extr(L(µ)⟨k⟩, i!∇(λ)) = Extr(iL(µ)⟨k⟩,∇↓(λ)) for all r ≥ 0, k ∈ Z and λ, µ ∈
Λ.

In virtue of Lemma 2.10, we have to show that Extr(∆↓(λ), L↓(µ)⟨k⟩) = 0 unless
r = k for all λ, µ ∈ Λ↓. We have

Extr(∆↓(λ), L↓(µ)⟨k⟩) = Extr(i∗∆(λ), L↓(µ)⟨k⟩) = Extr(∆(λ), L(µ)⟨k⟩)

which is zero unless r = k by assumption. The same argument shows the statement
for the linear injective resolutions of costandard objects. □
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2.1. Upwards induction. In this section we show the main theorem in the case of an
essentially finite highest weight category where the partial order is additionally lower
finite instead of interval finite. We start from a simple stratum, where the statement
is trivial, and then move upwards by extending the partially ordered labeling set with
bigger elements. This approach is inspired by [ÁDL03] and generalizes the arguments
there. However, we will need to adapt the arguments as we cannot assume finite global
dimension.

So assume throughout that R is a standard Koszul essentially finite highest weight
category with lower finite labeling set. We need the following technical definition.

Definition 2.13. Let λ ∈ Λ be minimal (which exists as Λ is lower finite). Denote by
j : R → R≰λ the quotient functor and by j! the left adjoint functor. We denote by κλ

n

the objects X of R satisfying the following properties:

• X is generated in degree d.
• X ′ := im(j!jX → X) is also generated in degree d.
• X is L(λ)-Koszul, i.e. Extr(X,L(λ)⟨k⟩) = 0 unless r = k − d.
• jX has an n-linear projective resolution, i.e. a projective resolution that is
linear in the first n terms.

Next we show that any object in κλ
n admits an n-linear projective resolution.

Lemma 2.14. Every module in κλ
n has an n-linear projective resolution.

Proof. We prove the statement via induction on n. For n = 0 the statement is trivial.
Now suppose that the statement is true for < n.
We have to show that X admits an n-linear projective resolution, and we distinguish

two cases. Either X ′ ̸= X or X ′ = X. We reduce the first case to the second case and
the second case to our induction hypothesis.

So assume thatX ′ ̸= X. By the triangle identities of adjunctions, we have jX ′ = jX.
Therefore, as j is exact, j(X/X ′) = 0 and thus X/X ′ is of the form

⊕
L(λ)⟨k⟩. As

X is generated in degree d, we have X/X ′ generated in degree d as well, so X/X ′ is
of the form

⊕
L(λ)⟨d⟩. Then, we have a short exact sequence

(1) 0 X ′ X
⊕

L(λ)⟨d⟩ 0.

As λ was chosen minimal, we have L(λ) = ∆(λ). Hence, as R is standard Koszul,
L(λ) has an n-linear projective resolution. By the horseshoe lemma, X has an n-linear
projective resolution if X ′ has an n-linear projective resolution (as X ′ is also generated
in degree d). As jX ′ = jX, we get X ′′ = X ′ and if we can show that X ′ ∈ κλ

n it
suffices to show the statement for Y ′ = Y . Using jX ′ = jX, we get that jX ′ has
an n-linear projective resolution and clearly X ′′ is generated in degree d. So we only
need to show X ′ is L(λ)-Koszul. The short exact sequence (1) induces a long exact
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sequence

· · · →Extr(
⊕

L(λ)⟨d⟩, L(λ)⟨k⟩) → Extr(X,L(λ)⟨k⟩) → Extr(X ′, L(λ)⟨k⟩) →

Extr+1(
⊕

L(λ)⟨d⟩, L(λ)⟨k⟩) → . . . .

As λ minimal, we have ∆(λ) ∼= ∇(λ) ∼= L(λ) and hence Extr(L(λ)⟨d⟩, L(λ)⟨k⟩) = 0
for all r ≥ 1 by [BS24, Cor. 3.2]. Together with the L(λ)-Koszulity of X we get that
X ′ is L(λ)-Koszul. Hence, X ′ ∈ κ.
The remaining case to consider is X ′ = X. Consider the short exact sequence

0 Ω P X 0 ,

where P is the projective cover of X and Ω the first syzygy. If we can show that Ω is
generated in degree d+ 1 and that Ω ∈ κλ

n−1, we can apply the induction hypothesis
to get that Ω has an (n− 1)-linear projective resolution. Then, we can assemble this
with the above short exact sequence into an n-linear projective resolution of X. So
we have to show that Ω ∈ κλ

n−1 and that it is generated in degree d+ 1. As j is exact,
we also obtain an exact sequence

0 jΩ jP jX 0 .

By assumption jX has an n-linear projective resolution and thus jΩ has an (n− 1)-
linear projective resolution. In particular, we see that jΩ is generated in degree d+ 1
and thus also Ω′. Now consider the projective cover P ′ of Ω. We have to show that P ′

is generated in degree d+ 1. For every summand of the form P (µ)⟨k⟩ with µ ≠ λ this
follows from the statement for Ω′. For P (λ)⟨k⟩ this follows from the L(λ)-Koszulity
of X. Finally, we have to show that Ω is L(λ)-Koszul.

For this consider the long exact sequence

· · · →Extr(P,L(λ)⟨k⟩) → Extr(Ω, L(λ)⟨k⟩) → Extr+1(X,L(λ)⟨k⟩) →
Extr+1(P,L(λ)⟨k⟩) → . . . .

The outer terms vanish for all r > 1 as P is projective. As X = X ′, no summand
of P can be isomorphic to P (λ)⟨k⟩. Hence, Extr(Ω, L(λ)⟨k⟩) ∼= Extr+1(X,L(λ)⟨k⟩),
which is 0 unless r + 1 = k − d. Thus, Ω is L(λ)-Koszul. Finally, this gives Ω ∈ κλ

n−1.
By induction hypothesis Ω has an (n − 1)-linear projective resolution and thus we
can assemble this with the above short exact sequence into an n-linear projective
resolution of X. □

Remark 2.15. In Lemma 2.14 we are using that we work with a highest weight
category (not just a stratified category). Indeed, we need the existence of a linear
projective resolution of an arbitrary object in Rλ for minimal λ. If Rλ is simple, the
existence is clear.
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Now we have all the ingredients to prove the main theorem for the special case of
an essential finite highest weight category R with lower finite labeling set.

Theorem 2.16. Let R be an essentially finite highest weight category with lower finite
labeling set. If R is standard Koszul, then R is Koszul.

Proof. We need to show that every L(µ) has a linear projective resolution. Let λ ≤ µ
minimal. If µ = λ, we have L(λ) = ∆(λ) and hence a linear projective resolution by
assumption. If µ ̸= λ, we want to reduce the statement to R≰λ. For this, observe that
L(µ) as well as L(µ)′ are generated in degree 0.

Next, we consider Extr(L(µ), L(λ)⟨k⟩). By assumption, we know that L(λ) = ∇(λ)
has a linear injective resolution. But this means, that Extr(L(µ), L(λ)⟨k⟩) = 0 unless
r = k and hence L(µ) is L(λ)-Koszul. Hence, in view of Lemma 2.14, L(µ) has a linear
projective resolution if jL(µ) has a linear projective resolution, where j : R → R≰λ is
the quotient functor.

By Lemma 2.11, R≰λ is standard Koszul with lower finite labeling set. Furthermore,
jL(µ) is again an irreducible module in R≰λ. So we can repeat the argument from
above. As Λ is lower finite, we will reach a step where µ is minimal, whence we get
a linear projective resolution. As mentioned above this gives then linear projective
resolutions for the previous Serre quotient categories and ultimately for L(µ). □

2.2. Downwards induction. In this section, we prove the main theorem. The main
strategy is to use Lemma 2.11 to restrict to essentially finite highest weight categories
with lower finite labeling set. In the restricted case, we can apply Theorem 2.16 to
show that R↑ is Koszul.

Then, we assemble all the upper truncations into a directed system for R and show
that the colimit gives the desired linear projective resolution.

Theorem 2.17. Let R be an upper finite or essentially finite graded highest weight
category, respectively.

If R is standard Koszul, then R is Koszul.

Proof. We have to show that every L(λ) has a linear projective resolution. For this,
we first introduce some technical upper subsets of Λ. Let X ⊆ Λ and write B1(X) for
the set of all λ ∈ Λ such that there exists a µ ∈ X with HomR(P (λ)⟨1⟩, P (µ)) ̸= 0.
Define Bn(X) := Bn−1(B1(X)) and let Λn be the upper set generated by Bn({λ}). As
HomR(P (λ)⟨1⟩, P (µ)) ̸= 0 is nonzero for only finitely λ (for fixed µ) by assumption,
we, in particular, have that Λn is lower finite.
We write Rn for the upper truncation of R at Λn. For λ ∈ Λn we write enL(λ) for

the irreducible associated to λ in Rn. We use similar notation for the standard and
projective modules.
By jn : R → Rn we denote the Serre quotient functor. This has a left adjoint

jn! : Rn → R and a right adjoint jn,∗ : Rn → R given by HomAn(enA, ).
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Furthermore, for n ≤ m we have Serre quotient functors jnm : Rm → Rn and the
corresponding left respectively right adjoints jnm,! and jn,∗m . The left adjoint is called
standardization functor and the right adjoint is called costandardization functor These
satisfy the following commutation relations (n < m < k):

(2)

jnm ◦ jmk = jnk jnm ◦ jm = jn

jmk,! ◦ jnm,! = jnk,! jm! ◦ jnm,! = jn!

jm,∗
k ◦ jn,∗m = jn,∗k jm,∗ ◦ jn,∗m = jn,∗

Additionally for λ ∈ Λm and n < m the functor jnm sends emP (λ) respectively emL(λ)
to enP (λ) respectively enL(λ) if λ ∈ Λn and emL(λ) to 0 otherwise. The same holds
if we leave out the m.
The standardization functor jnm,! sends enP (λ) to emP (λ) for λ ∈ Λn, and we have

that jnm ◦ jnm,! = id. Again the same holds true if we leave out the m.
By assumption R is standard Koszul and hence Rn is standard Koszul for all

n by Lemma 2.11. The Serre quotient Rn is an (essentially) finite highest weight
category with (lower) finite labeling set. Hence, it is Koszul by Theorem 2.16. So for
λ ∈ Λm we have a linear projective resolution of emL(λ) in Rm, which is unique up to
isomorphism. We denote this by (where P k

m(λ) is generated in degree k)

P •
m(λ) : · · · → P k

m(λ) → P k−1
m (λ) → · · · → P 1

m(λ) → P 0
m(λ) → emL(λ).

Now if λ ∈ Λn for some n < m by exactness of jnm we get an exact sequence

· · · → jnmP
k
m(λ) → jnmP

k−1
m (λ) → · · · → jnmP

1
m(λ) → jnmP

0
m(λ) → enL(λ).

Therefore, by [Wei94, Thm. 2.2.6] there is a map (unique up to homotopy)

ιnm(λ) : P
•
n(λ) → jnmP

•
m(λ),

and we can choose these maps ιnm(λ) such that for n ≤ m ≤ k the following diagram
commutes

P •
n(λ) jnmP

•
m(λ)

jnkP
•
k (λ) = jnmj

m
k P •

k (λ)

ιnm(λ)

ιnk (λ)
jnm(ιmk (λ)) .

For µ ∈ Λm and µ /∈ Λn for m > n we have that emP (µ) can only appear in
homological degrees > n of a linear projective resolution of emL(λ) by construction of
Λn. Therefore, any summand of P k

m(λ) for k ≤ n has to be of the form emP (µ) for
some µ ∈ Λn.

Additionally, jnmemP (µ) = enP (µ) for µ ∈ Λn and thus,

jnmP
n
m(λ) . . . jnmP

1
m(λ) jnmP

0
m(λ) enL(λ)
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is a beginning of a linear projective resolution of enL(λ) and by uniqueness of a linear
projective resolution, ιnm(λ) has to be an isomorphism in degrees ≤ n.

Using the unit ηnm of the adjunction jnm,! ⊢ jnm, we get a morphism gnm(λ) of resolutions
as the composition

jnm,!P
•
n(λ) jnm,!j

n
mP

•
m(λ) P •

m(λ).
jnm,!(ι

n
m(λ)) (ηnm)P•

m(λ)

We observe that for µ ∈ Λn we have jnm,!j
n
memP (µ) = emP (µ), so gnm(λ) is an isomor-

phism in degrees ≤ n. Additionally, we look at the diagram

jnk,!P
•
n(λ) = jmk,!j

n
m,!P

•
n(λ) jmk,!j

n
m,!j

n
mP

•
m(λ) jmk,!P

•
m(λ)

jnk,!j
n
kP

•
k (λ) jmk,!j

n
m,!j

n
mj

m
k P •

k (λ) jmk,!j
m
k P •

k (λ)

P •
k (λ)

jnk,!(ι
n
m(λ))

jnk,!(ι
n
k (λ))

jmk,!(η
n
m)

jnk,!j
n
m(ιmk (λ)) jmk,!(ι

m
k (λ))

=

ηnk

jmk,!(η
n
m)

ηmk

.

In order to make the diagram a bit more clear we suppressed for the unit ηnm the index
describing the object. By our choice of the maps ιnm(λ) the left square commutes. By
naturality of ηnm the right square commutes as well. The lower triangle commutes as
the adjunction jnk,! ⊢ jnk is given as the composition of the adjunctions jnm,! ⊢ jnm and
jmk,! ⊢ jmk . Now there are two possibilities to go from jnk,!P

•
n(λ) to P

•
k (λ). One is given by

gnk (λ) and the other one by gmk (λ) ◦ jmk,!gnm(λ). So we obtain gnk (λ) = gmk (λ) ◦ jmk,!gnm(λ).
By defining fn

m(λ) := jm! gnm(λ) we get morphisms of chain complexes in R.

jn! P
•
n(λ) jm! P •

m(λ).
fn
m(λ)

From gnk (λ) = gmk (λ) ◦ jmk,!gnm(λ) we get fn
m ◦ fm

k = fn
k for n ≤ m ≤ k.

We claim that the direct limit of this sequence is a linear projective resolution of
L(λ). First note that the morphism fn

m(λ) is an isomorphism in homological degrees
≤ n (because gnm(λ) is one in these degrees). This means that in homological degrees
k ≤ n the direct limit is actually a projective module which is generated in degree
k. So in each homological degree, we have by construction a finite direct sum of
indecomposable projectives, and so this is a chain complex of locally finite dimensional
modules.

Let us take a closer look at this resulting chain complex

· · · → lim−→ jn! P
s
n(λ) → · · · → lim−→ jn! P

1
n(λ) → lim−→ jn! P

0
n(λ) → lim−→ jn! L(λ) → 0.
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An object M in R is zero if and only if jmM = 0 for all m ≥ 0. As taking homology
commutes with exact functors, we observe that the above chain complex is exact if
and only if jm lim−→ jn! P

•
n is exact for all m ≥ 0.

The restriction functor jm admits a left adjoint (jm,∗) and so it commutes with
direct limits. Hence, we have

jm lim−→ jn! P
s
n(λ) = lim−→ jmjn! P

s
n(λ).

Using the commutations relations (2), we see that

jmjn! =


jnm,! if n < m,

id if n = m and

jmn if n > m,

and thus the right-hand side of the above equation is the direct limit of the complex

j0m,!P
s
0 (λ) → · · · → jm−1

m,! P s
m−1 → P s

m(λ) → jmm+1P
s
m+1(λ) → jmm+2P

s
m+2(λ) → . . . .

Now by our previous argument, the homomorphisms jml P s
l (λ) → jml+1P

s
l+1(λ) are

isomorphisms for s ≤ m. Thus, the first m terms in jm lim−→ jn! P
•
n(λ) agree with the

first m terms in jml P •
l (λ) and thus are exact. Hence, lim−→ jn! P

•
n(λ) is also exact, which

is then a linear projective resolution of L(λ).
Hence, R is Koszul. □

In the following two sections we are going to apply our main theorem to show
the Koszulity of two upper finite highest weight categories: modules over Khovanov
algebras of type B and graded representation categories of Deligne categories.

3. Definition of the Khovanov algebra

In this section we are going to recall the definition of the Khovanov algebra of type
B from [ES16] and its most important properties. For the easier algebra in type A we
refer to [BS11a]. For this we fix δ ∈ Z and L∞ := δ

2
+ Z ∩ R≥0.

Definition 3.1. An (infinite) weight diagram of type B is a map µ : L∞ → {∧,∨, ◦,×, ⋄}
satisfying

• ⋄ can only occur as the image of 0,
• 0 can be only mapped to ◦ or ⋄,
• µ−1({◦,×,∧}) is finite,
• |µ−1(◦)| − |µ−1(×)| = ⌊ δ

2
⌋.

Two weight diagrams belong to the same block, if the underlying number lines, the
positions of ◦ and × and the number of ∧’s agree.
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Definition 3.2. Two vertices of a weight diagram are neighbored if they are only
separated by ◦ and ×. The cup diagram µ associated with a weight diagram µ is
obtained by applying the following steps in order.

(C-1) First connect neighbored vertices labeled ∨∧ successively by a cup, i.e. we
connect the vertices by an arc forming a cup below. Repeat this step as long
as possible, ignoring already joint vertices. Note that the result is independent
of the order in which the connections are made

(C-2) Attach a vertical ray to each remaining ∨.
(C-3) Connect pairs of neighbored ∧’s from left to right by cups (we interpret ⋄ for

this as a ∧).
(C-4) If a single ∧ or ⋄ remains, attach a vertical ray.
(C-5) Put a marker • on each cup created in (C-3) and each ray created in (C-4).
(C-6) We erase the marker from the component that contains the ⋄ if the number of

placed markers in (C-5) is odd.
(C-7) Finally, delete all ∨ and ∧ labels at vertices.

A cap diagram is defined to be the horizontal mirror image of a cup diagram. If a
is a cup or a cap diagram, its horizontal mirror image is denoted by ∗. We will also
write λ for λ∗.

0 1 0 1 0 1 0 1 0 0 0 0

Figure 1 Orientations and degrees

Definition 3.3. An oriented circle diagram aλb, is given by a cup diagram a, a weight
diagram λ and a cap diagram b with the same underlying number lines, such that the
positions of ◦ and × in a, λ and b agree and that each cup (resp. cap) in a (resp. b) is
oriented as in Figure 1.

Every cup, cap and ray of aλb has an associated integer according to Figure 1. The
sum deg(aλb) of all these integers is called the degree of aλb.

Definition 3.4. For a block Λ associated to the number line L∞, the Khovanov algebra
KΛ is the graded associative algebra with underlying basis given by all oriented circle
diagrams aλb with λ ∈ Λ with underlying number line L (resp. L∞), where aλb is
homogeneous of degree deg(aλb).
The multiplication (aλb)(cµd) is defined to be 0 whenever b∗ ̸= c and if b∗ = c, we

draw the circle diagram (aλb) under the circle diagram (b∗µd), where we connect the
rays of b and b∗ and apply certain surgery procedures. All these surgery procedures
take a cup-cap-pair and replace it by two straight lines. After every cup-cap-pair
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is removed, one collapses the middle section and defines this to be (aλb)(cµd). For
details (and the proof that this is in fact associative) we refer to [ES16, Section 5].

Remark 3.5. There also exists a finite dimensional version of this Khovanov algebra,
see e.g. [ES16]. All properties and results mentioned here for KΛ hold for the finite
dimensional one as well (using the same proofs).

The algebra KΛ is not finite dimensional. However, the elements eλ := λλλ
for λ ∈ Λ form again pairwise orthogonal idempotents and thus give the algebra
KΛ =

⊕
λ,µ∈Λ eλKΛeµ the structure of a locally unital algebra. By gmodlf(KΛ) we

refer to locally finite dimensional graded modules over KΛ, i.e. graded modules M
such that dim eλM < ∞ for all λ ∈ Λ.

The irreducible locally finite dimensional KΛ-modules are in bijection with Λ. Given
λ ∈ Λ we construct a one dimensional irreducible KΛ-module L(λ) as follows. As a
vector space it is just C and eµ acts by 1 if λ = µ and 0 otherwise.

The indecomposable projective objects in gmodlf(KΛ) are given by P (λ) := KΛeλ
for λ ∈ Λ.

Furthermore, we define standard modules ∆(µ) for µ ∈ Λ. These are the cell modules
associated to the cellular structure (in the sense of [GL96]) of KΛ in [ES16, Theorem
7.1]. These are given as the quotient of P (µ) by the submodules U(µ) generated by
all oriented circle diagrams aλµ with λ ̸= µ (then we necessarily have λ > µ).
Given a graded KΛ-module M , we define for i ∈ Z the graded module M⟨i⟩ by

M⟨i⟩j = Mj−i.
We have an anti-involution ∗ on KΛ which is given by sending aλb to b∗λa∗. And this

gives rise to a duality (also denoted ∗) on gmodlf (KΛ). For a locally finite dimensional
graded KΛ-module M , we define the graded piece (M⊛)j := HomC(M−j,C) and
x ∈ KΛ acts on f ∈ M⊛ by (xf)(m) := f(x∗m). We also easily see that L(λ)⊛ = L(λ).

With these definitions we can conclude this section with the following theorem:

Theorem 3.6. The category gmodlf (KΛ) is an upper finite highest weight category in
the sense of [BS24] with standard objects ∆(λ), λ ∈ Λ.

Proof. The second part is just [ES21, Cor 2.11] after identifying their category D(δ)
(which consists of contravariant functors from Rep(Oδ) to Vect, the category of finite
dimensional complex vector spaces) with gmodlf (K) using [ES21, Thm. 6.22]. □

Remark 3.7. The main difference between the type A and type B versions is that
for type A there do not appear any dots on the circle diagrams but all the other
properties listed here hold similarly in this easier case (see also [BS11a]).

4. Koszulity of the Khovanov algebras of type B

In this section we will show that KΛ is Koszul for any block Λ. Note that in
[ES16, Theorem 9.1], Ehrig and Stroppel identified the finite dimensional version with
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parabolic blocks of category O, which are known to be Koszul (see e.g. [BGS96]). This
approach does not carry over to the infinite dimensional case, so we have to apply
other methods.
As KΛ has a admits a duality that preserves the simple objects, it suffices to

construct a linear projective resolution of the standard modules by Theorem 2.9. We
will construct these using geometric bimodules and projective functors similar to the
approach of Brundan and Stroppel in [BS10]. The definition of geometric bimodules
uses crossingless matchings (of type B) which we recall now.

A crossingless matching is a diagram t, which is obtained by drawing an admissible
cap diagram c underneath an admissible cup diagram d and connecting the rays in c to
the rays in d from left to right. This means that we allow dotted cups, caps and lines,
but each dot necessarily needs to be able to be connected to the left boundary without
crossing anything, just as in the case of admissible circle diagrams (see [ES16, Def.
3.5]). Furthermore, we delete pairs of dots on each segment, such that each line
segment contains at most one dot. Any crossingless matching is a union of (dotted)
cups, caps and line segments, for example:

We denote by cups(t) respectively caps(t) the number of cups respectively caps in t.
Furthermore, let t∗ be the horizontally reflected image of t.

We say that t is a ΛΓ-matching if the bottom and top number lines of t agree with
the number lines of Λ respectively Γ.
Given additionally a cup diagram a and a cap diagram b such that their number

lines agree with the bottom respectively top number line of t, we can glue them
together and obtain a ΛΓ-circle diagram atb.

Let Λ and Γ be blocks and let t be a ΛΓ-matching. Given weights λ ∈ Λ and µ ∈ Γ
we can glue these together from bottom to top to obtain a new diagram λtµ. We call
this an oriented ΛΓ-matching if

• each pair of vertices lying on the same dotted cup or the same undotted line
segment is labeled such that both are either ∨ or both are ∧,

• each pair of vertices lying on the same undotted cup or the same dotted line
segment is labeled such that one is ∨ and one is ∧,

• all other vertices are labeled ◦ or ×.

A diamond ⋄ can be interpreted as either ∨ or ∧.
Finally, given an oriented ΛΓ-matching and cap and cup diagrams a and b such

that aλ (resp. µb) is an oriented cup (resp cap) diagram we can glue these together to
obtain an oriented ΛΓ-circle diagram aλtµb.
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We call a ΛΓ-matching t proper if there exists at least one oriented ΛΓ-matching
for t. By a rightmost vertex x on a circle C we mean a vertex lying on C such that
on this numberline, there is no vertex to the right of x. In the bottom picture every
rightmost vertex is marked by x.

x

x

We refer to a circle in an oriented ΛΓ-diagram as clockwise respectively anticlockwise if
a rightmost vertex on the circle is labeled ∨ respectively ∧. This notion is well-defined
by a similar argument as in [ES16, Corollary 5.9].

Definition 4.1. The degree of a circle or a line in an oriented ΛΓ-circle diagram is
the total number of clockwise cups or caps that it contains. The degree of an oriented
ΛΓ-circle diagram is the sum of the degrees of each of its circles and lines. We call a
circle only consisting of one cup and one cap a small circle.

Lemma 4.2. The degree of an anticlockwise circle in an oriented ΛΓ-circle diagram is
one less than the total number of caps (equivalently, cups) that it contains. The degree
of a clockwise circle is one more than the total number of caps (equivalently, cups)
that it contains. The degree of a line is equal to the number of caps or the number of
cups that it contains, whichever is greater.

Proof. This can be verified similar to [ES16, Prop. 1.2.12+1.2.13] □

Definition 4.3. Let t be a ΛΓ-matching for some blocks Λ and Γ. Let a be a cap
diagram such that its number line agrees with the top one of t. We refer to circles or
lines not meeting the bottom number line in ta as upper circles or lines. The upper
reduction of ta refers to the cup diagram which is obtained by removing all upper
circles and lines as well as the top number line.

Example 4.4. Suppose ta as in Definition 4.3 looks like:

Then the upper reduction is:
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Lemma 4.5. If aλtµb is an oriented ΛΓ-circle diagram and c is the upper reduction
of tb, then aλc is an oriented circle diagram and

deg(aλtµb) = deg(aλc) + cups(t) + p− q,

where p (resp. q) is the number of upper circles that are clockwise (resp. anticlockwise)
in the diagram aλtµb.

Proof. When passing from tb to c, we remove all upper circles, which obviously have
the same number of cups and caps, and upper lines, which have one more cap than cup.
From every other component we remove an equal number of cups and caps. The total
number of cups removed is cups(t). The statement then follows from Lemma 4.2. □

Definition 4.6. Let Λ and Γ be two blocks, and let t be a ΛΓ-matching. Define Kt
ΛΓ

to be the graded vector space with homogeneous basis

{(aλtµb) | for all closed oriented ΛΓ-circle diagrams aλtµb}.
Define a degree preserving linear map

(3) ∗ : Kt
ΛΓ → Kt∗

ΓΛ, (aλtµb) 7→ (b∗µt∗λa∗),

where t∗, a∗ and b∗ denote the mirror images of t, a, b in the horizontal axis.
We define (cνd) · (aλtµb) to be 0 if d∗ ̸= a. Otherwise, we draw cνd beneath aλtµb

and use the same surgery procedures as for D to smooth out the symmetric middle
section. The product is then defined as this linear combination. Similarly, we can
define (aλtµb) · (cνd) and thus endow Kt

ΛΓ with the structure of a (KΛ,KΓ)-bimodule.

The following theorem generalizes the cellular structure of Khovanov’s algebra to
our setting and is very important for the following computations.

Theorem 4.7. Suppose that we are given basis vectors (aλb) ∈ DΛ and (cµtνd) ∈ Kt
ΛΓ.

The multiplication satisfies

(4) (aλb)(cµtνd) =


0 if b ̸= c∗,

saλb(µ)(aµtνd) + (†) if b = c∗ and aµ is oriented,

(†) otherwise,

where

(1) (†) denotes a linear combination of basis vectors of Kt
ΛΓ of the form (aν ′tν ′d)

for µ′ > µ,
(2) the scalar saλb(µ) ∈ {0, 1,−1} depends only on aλb and µ, but not on d and is

equal to the scalar saλb(µ) from [ES16, Theorem 7.1] and
(3) if λ = µ and b = λ = c∗, then saλb(µ) = 1.

Proof. This follows by using the same arguments as [ES16, Theorem 7.1 + Remark
7.6]. □
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4.1. Projective functors. In this section we are going to introduce so-called pro-
jective functors and use them to prove that Dλ is Koszul. In [BS11b] the Khovanov
algebra of type A is identified with a projective generator of parabolic category O
for gl(n). Under this identification the projective functors correspond to translation
functors (see also [HNS24] for the setting in type B).

Definition 4.8. Let t be a proper ΛΓ-matching. Define the functor

Gt
ΛΓ := Kt

ΛΓ⟨− caps(t)⟩ ⊗ : gmodlf (KΓ) → gmodlf (KΛ).

We call any functor which is isomorphic to a finite direct sum of the above functors
(possibly shifted) a projective functor.

Theorem 4.9. Let t be a proper ΛΓ-matching and let γ ∈ Γ. Then

(1) Gt
ΛΓP (γ) ∼= Kt

ΛΓeγ⟨− caps(t)⟩ as left KΛ-modules,
(2) the module Gt

ΛΓP (γ) is nonzero if and only if each upper line in tγγ is oriented
and

(3) in this case moreover,

Gt
ΛΓP (γ) ∼= P (λ)⊗R⊗n⟨cups(t)− caps(t)⟩

as graded left KΛ-modules (KΛ acts again on the right-hand side only on the
first factor), where λ ∈ Λ is such that λ is the upper reduction of tγ and n
denotes the number of upper circles removed in the reduction process.

Proof. For (1) note that

Gt
ΛΓP (γ) = Kt

ΛΓ⟨− caps(t)⟩ ⊗KΓ
P (γ) = Kt

ΛΓ ⊗KΓ
KΓeγ⟨− caps(t)⟩

∼= Kt
ΛΓeγ⟨− caps(t)⟩.

For the forward implication of (2), note that for any weight ν such that νγ is oriented,
the rays are oriented in the same ways as in γγ. Thus, if there exists an upper line in
tγγ which is not oriented, then there cannot exist an oriented ΛΓ-circle diagram of
the form aµtνγ. But these form a basis of Kt

ΛΓeγ and hence Gt
ΛΓP (γ) = 0 by (1).

In order to finish the proof, suppose that each upper line of tγγ is oriented properly.
Enumerate the n upper circles in some order and define the map

f : Kt
ΛΓeγ → KΛeλ ⊗R⊗n, (aµtνγ) 7→ (aµλ)⊗ xi ⊗ · · · ⊗ xn

where xi is 1 (resp. X) if the i-th circle is oriented anticlockwise (resp. clockwise).
This map is then an isomorphism of vector spaces. It is KΛ-linear as every tag

gets altered by an even number of undotted arcs, and moreover it is homogeneous of
degree cups(t) by Lemma 4.5. By observing that 0 ̸= P (λ) = KΛeλ and Gt

ΛΓP (γ) ∼=
Kt

ΛΓeγ⟨− caps(t)⟩, this finishes the proof of (2) and (3). □

Corollary 4.10. The module Kt
ΛΓ is projective as a left KΛ-module as well as projective

as a right KΓ-module. Hence, Gt
ΛΓ is exact.
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Proof. By Theorem 4.9(1) and (3) we have that Kt
ΛΓ =

⊕
γ∈ΓK

t
ΛΓeγ is projective as

a left KΛ-module. Using the antimultiplicative map ∗, Kt
ΛΓ being projective as a right

KΓ-modules is the same as Kt∗
ΓΛ being a projective left KΓ-module, but this was done

above. □

The following theorem deals with the effect of a projective functor on standard
modules ∆(µ).

Theorem 4.11. The KΛ-module Gt
ΛΓ∆(γ) has a filtration

{0} = M(0) ⊂ M(1) ⊂ · · · ⊂ M(n) = Gt
ΓΛ∆(γ)

such that M(i)/M(i − 1) ∼= ∆(µi)⟨deg(µitγ) − caps(t)⟩ for each i. In this case
µ1, . . . , µn denote the elements of the set {µ ∈ Λ | µtγ oriented} ordered such that
µi > µj implies i < j.

Proof. A basis for Gt
ΛΓP (γ) is given by (aµtνγ) ⊗ eγ by Theorem 4.9. The module

Gt
ΛΓU(γ) has a basis given by (aµtνγ) ⊗ eγ with ν > γ by the paragraph after

Definition 3.4 and Theorem 4.7. Thus, a basis for ∆(γ) is given by (aµtγγ)⊗ eγ
Now defineM(0) = {0} and inductivelyM(i) to be the subspace generated byM(i−

1) and {(aµitγγ)⊗ eγ | for all oriented cup diagrams aµi}. This defines a filtration
of Gt

ΛΓ∆(γ) by vector spaces with M(n) = Gt
ΛΓ∆(γ) by the above argumentation.

That the M(i) are in fact KΛ-submodules follows from Theorem 4.7, our assumption
on the ordering of the µi, and the above paragraph.
The quotient M(i)/M(i− 1) has a basis given by

{(cµitγγ ⊗ eγ | for all oriented cup diagrams cµi}.

Theorem 4.7 says that

(aλb)(cµitγγ)⊗ eγ ≡

{
saλb(µi)(aµitγγ)⊗ eγ if b = c∗ and aµi oriented,

0 otherwise,

working modulo M(i− 1). Looking at the definition of ∆(µ), we see that the map

M(i)/M(i− 1) → ∆(µi), (cµitγγ)⊗ eγ 7→ (cµiµi)

is an isomorphism of KΛ-modules. Moreover, it is homogeneous of degree deg(µitγ)−
caps(t) by definition. This proves the first statement. □

Theorem 4.12. For every standard module ∆(λ) there exists a linear projective
resolution

· · · → P k → P k−1 → · · · → P 1 → P 0 → ∆(λ).

Proof. This proof follows the same arguments as in the type A case in [BS10, Theorem
5.3].
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The claim is shown by a nested induction. First we do an induction on the number
of caps of λ and secondly one on the Bruhat order. If #(caps(λ)) = 0, then λ is
maximal. Hence, it suffices to consider maximal weights for the induction beginning.
But in this case we have P (λ) = ∆(λ) and the claim holds.
Now suppose that #(caps(λ)) > 0 and assume the claim for all µ with fewer caps

and all λ′ > λ. Observe that the number of caps is finite for every weight diagram.
As λ is not maximal, we can apply a Bruhat move B at positions i and j to λ. This

corresponds to a cap C in λ. Now let µ be the weight, which is obtained by deleting
the positions of the endpoints of C, and denote the corresponding block by Γ.
Then let t be the ΛΓ-matching given by a cap connecting positions i and j (with

the same parity of dots as C) and vertical strands everywhere else.
We observe that there are exactly two weights γ such that γtµ is oriented, namely

γ = λ and γ = λ′ (the former corresponds to orienting C anticlockwise and the latter
to a clockwise orientation). So by Theorem 4.11 (as λ′ > λ) there is a short exact
sequence

(5) 0 ∆(λ′) Gt
ΛΓ∆(µ) ∆(λ)⟨−1⟩ 0.

f

By the induction hypothesis we have constructed a linear projective resolution P •(λ′)
of ∆(λ′) and as µ contains fewer caps than λ we also have constructed a linear
projective resolution P •(µ) of ∆(µ).
By Corollary 4.10, applying Gt

ΛΓ to P •(µ) gives a projective resolution Gt
ΛΓP

•(µ)
of Gt

ΛΓ∆(µ).
As in [BS10, Theorem 5.3], the cone of f is then a projective resolution of ∆(λ)⟨−1⟩,

see also [Sey17, Proposition 4.3.1] for the setting here. Now note that

Cone(f)k+1 = P (λ′)k ⊕Gt
ΛΓP (µ)k+1.

Now recalling the degree shift in (5), we only need to show that P (λ′)k and Gt
ΛΓP (µ)k+1

are generated in degree k. For P (λ′)k, this follows as P •(λ′) is a linear projective
resolution of ∆(λ′). Furthermore, P (µ)k+1 is generated in degree k + 1 and so
Gt

ΛΓP (µ)k+1 is generated in degree k by Theorem 4.9. □

Theorem 4.13. The algebra K is Koszul.

Proof. The category gmodlf(K) is an upper-finite highest weight category by Theo-
rem 3.6. A linear projective resolution of the left standard modules was constructed
in Theorem 4.12. As we have a duality preserving irreducibles, the statement follows
from Remark 2.7 and Theorem 2.9. □

Remark 4.14. The theory of projective functors and geometric bimodules was further
studied in [HNS24]. In particular, there are analogues of Theorem 4.9 for the effect
on irreducible modules. The relevance of this formula is that they describe
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(1) the structure of indecomposable summands of V ⊗d, where V is the natural
representation of OSp(r|2n), and

(2) the effect of translation functors on irreducible OSp(r|2n)-modules.

4.2. Deligne categories. In [Del07] Deligne constructed families of universal tensor
categories Rep(GLδ), Rep(Oδ), Rep(Sδ), δ ∈ C, [Del07] interpolating the represen-
tation categories Rep(GL(n)), Rep(O(n)), Rep(S(n)), n ∈ N. The interpolation
property refers to the fact that these Deligne categories admit for integral parameters
δ ∈ N or Z the usual representation categories as quotients. We focus now on the
orthogonal case introduced in [Del07] and further studied in [CH17]. A very similar
situation exists in the Rep(GLδ)-case.
The Deligne category Rep(Oδ) is generated by one object V as a Karoubian sym-

metric monoidal category. The endomorphism spaces of tensor powers V ⊗d of this
object are given by the Brauer algebras Brd(δ).

Let Λ denote the set of all partitions, and

Λd =

{
{λ | |λ| = d− 2i, 0 ≤ i ≤ d

2
}, if δ ̸= 0 or d odd;

{λ | |λ| = d− 2i, 0 ≤ i < d
2
}, if δ = 0 and d even.

For any δ ∈ C, the algebras Brd(δ) are cellular [GL96]. Its cell modules are denoted by
∆d,δ(λ) where λ ∈ Λd(δ) ∪ {∅} and the indecomposable projective modules by Pd,δ(λ).

Using this parametrization of the indecomposable projective modules it is easy to
show that the indecomposable objects in Rep(Oδ) are (up to isomorphism) parametrized
by the set Λ of all partitions. We denote by Rδ(λ) the corresponding indecom-
posable object. It arises as the image of an idempotent in some Brauer algebra
Brd(δ) = End(V ⊗d). If Rδ(λ) = Im(eλ) ⊂ V ⊗d, Rδ(µ) = Im(eµ) ⊂ V ⊗d, we have

HomRep(Oδ)(Rδ(λ), Rδ(µ)) = eλ Brd(δ)eµ =: eλAeµ.

A representation of Rep(Oδ) is a contravariant functor from Rep(Oδ) to V ect, the
category of finite dimensional complex vector spaces. We denote this category by
D(δ). This is an abelian category whose indecomposable projective objects are given
by the representations

Pδ(λ) := HomRep(Oδ)(−, Rδ(λ))

The category D(δ) can be identified with the category of locally finite dimensional
A-modules for the locally finite dimensional locally unital algebra

A :=
⊕
λ,µ

eλAeµ.

Under this identification, Pδ(λ) corresponds to the A-module Aeλ.
The category D(δ) contains for each partition λ representations ∆δ(λ) isomorphic

to the representation which sends Rδ(µ) to HomBrd(δ)(Pd,δ(µ),∆d,δ(λ)) for some d
satisfying λ, µ ∈ Λd(δ), and a morphism α : Rδ(ν) → Rδ(ν) to the precomposition
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− ◦ α with α. By [ES21, Corollary 2.11] the category D(δ) is an upper finite highest
weight category with poset Λ and with standard objects ∆δ(λ), λ ∈ Λ. Here we have
fixed the reverse inclusion ordering on Λ: λ ≥ µ if λ is contained in µ (so that ∅ is
maximal).

Theorem 4.15. [ES21] There is an equivalence of categories between D(δ) and
gmodlf (KΛ).

This equivalence can be used to endow D(δ) with a grading. The same arguments
work if the Khovanov algebra of type B is replaced with its type A variant, and
the Deligne category Rep(Oδ) with Rep(GLδ). The following statement follows from
Theorem 4.13.

Corollary 4.16. The graded version of D(δ) is Koszul, i.e. A =
⊕

λ,µ∈Λ eλAeµ is a
Koszul algebra. Likewise, the graded version of the abelianized Deligne category of
Rep(GLδ) is Koszul.

Remark 4.17. While the Khovanov algebras of type A and B admit a Koszul grading,
there are also negative examples. In [Neh24] Nehme constructed an analogue of the
Khovanov algebra Kn for representations of the Lie superalgebra p(n) and used this
to give an explicit description of the endomorphism ring of a projective generator for
p(n). By [Neh24, Theorem E] there does not exist a non-negative grading on Kn with
semisimple degree 0 part, that is generated in degree 1 for n ≥ 2. In particular, Kn

cannot be Koszul.
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